
Wockville, Maryland 2 



NOTICE 

This report was prepared as an account of Government sponsored 
work. Neither the United States, nor the National Aeronautics 
and Space Administration (NASA), nor any person acting on be- 
half of NASA: v *  

A.) Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, apparatus, 
method, 'or process disclosed in this report may not 
infringe privately owned rights: or 

B.) Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor- 
mation, apparatus, method or process disclosed in 
this report. 

As used above, "person acting on behalf of NASA" includes any 
employee or contractor of NASA, or employee of such contractor, 
to the extent that such employee or contractor of NASA, or 
employee of such contractor prepares, disseminates, or pro- 
vides access to, any information pursuant to his employment or 
contract with NASA, or his employment with such contractor. 

Requests for copies of this report should be referred to 

National Aeronautics and Space Administration 
Scientific and Technical Information Facility 
P. 0. Box 33 
College Park, MD. 20740 



by 

Anthony M. Schwartz and Silvestre B. Tejada 

THE GILLETTE COMPANY RESEARCH INSTITUTE 
1413 Research Boulevard 
Rockville, Maryland 20850 

prepared for 

National Aeronautics an Administration 

April 20, 197 

-1 1 

NASA Lewis Research Center 
Cleveland, Ohio 

Donald A. Petrash, Project Manager 
Spacecraft Technology Division 



The evaporation rate of pure mercury was compared to that of mercury 

dosed to the extent of .02% (200 ppm) with eleven different metallic con- 

taminants. The evaporations were performed at 5 x 10 
Four of the contaminants, magnesium, sodium, lithium and tin, lowered the 

evaporation rate to less than 1% that of the pure mercury. The molecular 

mechanism of the lowering was not established. 

- 6  Torr and 24OC. 



SUMMARY 

The evaporation rates of pure mercury and mercury dosed with 200 ppm 
(.02%) of eleven different metallic contaminants were compared. The con- 

taminants were Na, Mg, Zn, Ga, Cd, In, Sn, Pb, Ag, Bi, and Li. The 

evaporations were performed at 5 x 10 Torr and 2 4 O C .  All. the contaminants 
decreased the evaporation rate significantly. The least effective contami- 

nant (silver) decreased it to 52% that of pure mercury; the most effective 

(tin, magnesium, sodium and lithium) to less than 1% that of pure mercury. 

The possibility of oxide film formation existed since the prevailing pres- 

sure did not preclude it, and since all the contaminants have a higher 

electrode potential than mercury. Of the four highly inhibiting contaminants 

sodium is the only one which could possibly be acting in elemental form via 

a Gibbsian-adsorption mechanism. 

ing via Gibbsian adsorption if we postulate either intermetallic compound 

formation with the mercury (or association in solution) or a soluble oxide 

formation. All four could possibly be acting via formation of a simple 

surface oxide film. This latter mechanism would presumably be unsatis- 

factory under space conditions, because there would be insufficient oxygen 

present to heal the film if ruptured. A Gibbsian adsorption mechanism is 

considered necessary for satisfactory performance in space. 
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Evaporat ion Rate  of Mercury as Affec ted  by 
Small P ropor t ions  of Contaminants 

I n t r o d u c t i o n  

Although mercury i s  a d e s i r a b l e  material  f o r  c e r t a i n  components of 

space v e h i c l e s  i t  s u f f e r s  from t h e  disadvantage of having a r e l a t i v e l y  h igh  

evapora t ion  ra te  under t h e  p r e v a i l i n g  hard  vacuum cond i t ions  i n  space.  

i s  known t h a t  non-vo la t i l e  s u r f a c e  f i l m s  as t h i n  as a s i n g l e  molecule are 

i n  some c a s e s  capable  of s i g n i f i c a n t l y  r e t a r d i n g  t h e  evapora t ion  ra te  of 

l i q u i d s .  

of s o l u b l e  metall ic i m p u r i t i e s  cause f i l m s  t o  form on t h e  s u r f a c e  of mercury 

under o rd ina ry  atmospheric cond i t ions ,  and t h a t  t h e s e  f i l m s  have an  

unexpectedly high con ten t  of t h e  contaminant metal. 

p o s s i b l e  t h a t  f i l m s  of t h i s  type  might be formed under space c o n d i t i o n s ,  

t h a t  they might be s e l f - h e a l i n g  o r  se l f - renewable  when mechanical ly  d i s r u p t e d ,  

and t h a t  t hey  might lower t h e  evapora t ion  ra te  of mercury s u f f i c i e n t l y  t o  

make i t  u s e f u l .  It was cons idered  impera t ive  f o r  engineer ing  purposes t h a t  

t he  percentage  of contaminant be s u f f i c i e n t l y  low t o  have no s i g n i f i c a n t  

e f f e c t  on t h e  bulk p r o p e r t i e s  of  t h e  mercury, and t h e r e f o r e  a maximum con- 

taminant concen t r a t ion  of 200 p a r t s  p e r  m i l l i o n  (.OZ%) w a s  a r b i t r a r i l y  se t .  

The o b j e c t  of t h i s  i n v e s t i g a t i o n  w a s  t o  compare t h e  evapora t ion  rates of 

pure mercury and mercury contaminated w i t h  200 ppm of 10 d i f f e r e n t  s o l u b l e  

metals a t  a f i x e d  temperature  (24'+5OC) - and a measured p res su re  less than  

It 

It i s  a l s o  known from recen t  work'') t h a t  very  small p ropor t ions  

It w a s  cons idered  

Tor r .  

Experimental  

The mercury samples wh i l e  being evaporated were contained i n  s m a l l  

d iameter  g l a s s  tubes  supported v e r t i c a l l y  and i n i t i a l l y  f i l l e d  t o  t h e  brim. 

The appa ra tus  w a s  designed t o  in t roduce  t h e  pre-cu t  and weighed contami- 

nant  metals i n t o  t h e  pre-weighed mercury, which w a s  he ld  i n  shal low t roughs ,  

a l low t h e  contaminants  t o  d i s s o l v e ,  load  t h e  tubes ,  t i l t  them back t o  t h e  

- 1 -  



uprighf  p o s i t i o n ,  and d i spose  of t h e  r e s i d u a l  mercury i n  t h e  t roughs  by 

pouring i t  i n t o  a c o l d  t r a p  a t  t h e  bottom of  the  appa ra tus ;  a l l  under h igh  

vacuum except  f o r  t h e  tube  loading  which w a s  done under dry  helium. Three 

samples were handled s imul taneous ly ,  one of them always be ing  pure mercury 

and each of  t h e  o t h e r  two a d i f f e r e n t  contaminated sample. The t h r e e  tubes  

were placed c l o s e  t o g e t h e r ,  and t h e  ra te  of  evapora t ion  w a s  monitored by 

measuring t h e  p rogres s ive  decrease  i n  l e v e l  of t h e  mercury by means of a 

ca the tometer .  Thus i n  a s i n g l e  run ,  which g e n e r a l l y  proceeded f o r  a t  least  

two o r  t h r e e  days,  t h e  evapora t ion  r a t e s  of two contaminated samples could 

be compared w i t h  t h a t  of pure  mercury. The measurements were always com- 

p a r a t i v e ,  and t h e  evapora t ion  rates of  t h e  contaminated samples are  expressed  

i n  the  R e s u l t s  s e c t i o n  as percentages  of t h e  evapora t ion  ra te  of  pure  mercury. 

Th i s  i s  because t h e  a b s o l u t e  evapora t ion  rates v a r i e d  widely from run  t o  run. 

T h i s  was not  s u r p r i s i n g ,  s i n c e  the  rates depend g r e a t l y  on t h e  l o c a t i o n  of  

t h e  s o l i d  mercury condensate  i n  t h e  co ld  f i n g e r  of t h e  b e l l  j a r  surrounding 

t h e  evapora t ion  u n i t  ( see  Appendix, page A - 2 ) .  I n  normal o p e r a t i o n  mercury 

vapor condenses on t h e  i n n e r  w a l l  of t h i s  co ld  f i n g e r  j u s t  a t  o r  s l i g h t l y  

below t h e  level of t h e  l i q u i d  n i t r o g e n  b a t h  o u t s i d e .  A s  t h e  n i t r o g e n  

evapora tes  and i t s  l e v e l  becomes lower t h e  upper p o r t i o n s  of condensed 

mercury can become w a r m  and evapora te  i n  compet i t ion  w i t h  t h e  t e s t  sample. 

S ince  t h e  n i t r o g e n  w a s  r ep len i shed  by a t i m e r  which p e r i o d i c a l l y  i n j e c t e d  

a f i x e d  q u a n t i t y ,  r a t h e r  t han  on t h e  b a s i s  of l i q u i d  level,  t he  amount of 

evapora t ion  from t h i s  source  w i t h i n  any given t f . n e  pe r iod  w a s  f a r  from 

c o n s t a n t .  Detai ls  of t he  appara tus  and t h e  experimental  procedure are 

given i n  t h e  Appendix. 

The e l even  metals used as contaminants ,aand t h e i r  p r o p e r t i e s ,  a r e  

l i s t e d  i n  Table  1, These metals w e r e  chosen f o r  t h e  fo l lowing  reasons:  

1. They are a v a i l a b l e  and procurable  i n  h igh ly  pure form. 2 .  They are 

s u f f i c i e n t l y  s o l u b l e  i n  mercury. 3 .  They r ep resen t  a range of r e a c t i v i t y ,  

i . e .  s u s c e p t i b i l i t y  t o  ox ida t ion .  4 .  They r e p r e s e n t  a range of  s u r f a c e  

t e n s i o -  b racke t ing  t h a t  of mercury. The l a s t  column of Table  1 l i s t s  s u r -  

f ace  t e n s i o n s  of some of t h e  200 ppm contaminated mercury samples, as 

measured i n  t h i s  l a b o r a t o r y  by the  bubble p re s su re  method ( d e t a i l s  i n  the  
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Appendix). Two of t h e  metals, L i  and N a y  were in t roduced  as concent ra ted  

amalgams which had been prepared i n  a i r  immediately beforehand. 

were in t roduced  i n  vacuum as pu re  metal. 

A l l  o t h e r s  

Resu l t s  

Of t h e  n ine  metals which were in t roduced  i n t o  t h e  mercury under h igh  

vacuum only  two, t i n  and s i lver ,  caused no diminut ion i n  t h e  v i s u a l  b r i g h t -  

ness of t h e  mercury s u r f a c e .  Lead, z i n c ,  bismuth and cadmium showed some 

d u l l i n g ,  presumably due t o  a t h i n  oxide f i lm.  Gallium and indium, and 

e s p e c i a l l y  magnesium, showed apprec tab le  d u l l i n g .  The l i t h i u m  and sodium 

amalgams showed somewhat less d u l l i n g .  Magnesium formed a f i l m  of  d e f i n i t e l y  

f r o s t y  appearance.  The magnesium, sodium, ga l l ium and l i t h i u m  samples 

showed a s t r o n g  tendency t-o w e t  t h e  g l a s s  c a p i l l a r i e s ,  and even t h e  Te f lon  

t rough,  when they  f i r s t  contac ted  them under vacuum. L a t e r ,  when t h e  vacuum 

w a s  r e l e a s e d  they b a l l e d  up on both su r faces  i n  normal fash ion .  Th i s  could 

be an e f f e c t  of a tmospheric  mois ture  o r  poss ib ly  of e l e c t r o s t a t i c  charg ing ,  

but  we  have no evidence as t o  t h e  real  cause,  nor w a s  any at tempt  made t o  

d iscover  i t .  

Evaporat ion ra tes  are shown i n  Table  2. The metals appear  t o  f a l l  

i n t o  t h r e e  groups: Lead and s i l v e r  allowed cons ide rab le  evapora t ion ,  

a l though even t h e s e  contaminants reduced t h e  evapora t ion  rate t o  a remark- 

a b l e  e x t e n t  cons ide r ing  t h e i r  extremely low concen t r a t ion .  T in ,  magnesium, 

sodium and l i t h i u m  reduced t h e  evapora t ion  ra te  t o  less than  1% t h a t  of  

pure mercury. The o t h e r  f i v e  metals had an  in t e rmed ia t e  e f f e c t .  

Discuss ion  

The theo ry  of t h e  e f f e c t  of t h i n  su r face  f i l m s  on the  evapora t ion  ra te  

of l i q u i d s  i s  r e l a t i v e l y  w e l l  worked The su r face  f i l m  acts  as 

one of t h e  important  energy b a r r i e r s  which t h e  escaping  molecule must over-  

come on i t s  p a t h  from t h e  i n t e r i o r  of t h e  l i q u i d  t o  t h e  remote r eg ion  of 

t h e  vapor phase.  The e x t e n t  t o  which it a c t s  as a b a r r i e r  depends on i t s  

chemical c o n s t i t u t i o n ,  i t s  th i ckness ,  and i t s  phys ica l  s t a t e ,  and our  d a t a  

can be d i scussed  i n  terms of t h e s e  t h r e e  p r o p e r t i e s .  
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I f  we t a k e  a b ina ry  s o l u t i o n  c o n s i s t i n g  of 99.98% mercury and -02% of 

another  meta l  ( t h e  "contaminant") t h a t  does not  form an i n t e r m e t a l l i c  com- 

pound wi th  t h e  mercury, t h e  composition of t h e  l iqu id-vapor  i n t e r f a c e  can be 

c a l c u l a t e d  by thermodynamics. Assuming t h a t  t h e  vapor phase con ta ins  no 

molecular s p e c i e s  o t h e r  t han  those  i n  t h e  l i q u i d ,  t h e  q u a n t i t a t i v e  r e l a t i o n -  

s h i p  i s  given by t h e  Gibbs abso rp t ion  equat ion ,  a s i m p l i f i e d  form of  which 

f o r  d i l u t e  b ina ry  s o l u t i o n  i s :  

where r, i s  t h e  s u r f a c e  excess  of s o l u t e ,  2 i s  t h e  concen t r a t ion  of 

s o l u t e ,  Y i s  t h e  s u r f a c e  t e n s i o n  of t h e  s o l u t i o n  and R and T have 

t h e i r  u s u a l  s i g n i f i c a n c e .  I f  t h i s  equa t ion  i s  used f o r  computation t h e  

concen t r a t ion  u n i t s  and energy u n i t s  should be c o n s i s t e n t .  

f o r  example, can  be i n  moles per  l i t e r ,  Y i n  dynes/cm, R i n  e r g s  pe r  O C ,  

and T i n  degrees  Kelvin.  Coupled wi th  t h e  f a c t  t h a t  t h e  s u r f a c e  t e n s i o n  

of a b inary  l i q u i d  m i x t u r e  l i e s -be tween  t h a t  of t h e  two components and i s  

s i n g l e  valued (at  cons t an t  temperature)  t h i s  equat ion  t e l l s  t h a t  t h e  com- 

ponent of lower s u r f a c e  t ens ion  becomes concent ra ted  i n  t h e  su r face .  The 

su r face  t e n s i o n s  of both components m u s t  be valued a t  t h e  temperature  of 

t h e  experiment ,  which i s ,  of course ,  impossible  f o r  s o l i d  s o l u t e s .  It i s  

an i n v a r i a b l e  r u l e ,  however, t h a t  t h e  su r face  t e n s i o n  of a pure substance 

inc reases  monotonical ly  wi th  dec reas ing  temperature .  Re fe r r ing  t o  Table  1 

it i s  ev iden t  t h a t  on ly  ga l l ium and sodium can r e l i a b l y  be expected t o  have 

a sur face  t e n s i o n  lower than  t h a t  of mercury i n  t h e  mixture  a t  24°C. The 

su r face  t e n s i o n  of l i t h i u m ,  bismuth and l ead ,  e x t r a p o l a t e d  back t o  t h i s  

temperature ,  would be h ighe r  than  t h a t  of  mercury; and t h e  su r face  t ens ions  

of t he  remaining metals are a l r eady  h ighe r  than  t h a t  of  mercury, even a t  

t h e i r  h igh  mel t ing  p o i n t s .  Sodium and ga l l ium,  t h e r e f o r e ,  are t h e  only  

metals of t h e  group t e s t e d  which could become concent ra ted  i n  t h e  s u r f a c e  

i n  an i n e r t  atmosphere. The remaining metals would be nega t ive ly  su r face  

a c t i v e ,  i . e .  t h e  s u r f a c e  concen t r a t ion  would be less than  t h e  bulk concen- 

t r a t i o n .  It i s  d i f f i c u l t  t o  conceive how t h e  su r face  t e n s i o n  lowerings t h a t  

were observed could be due t o  these  p u r e  meta l  contaminants.  

r, and 6 2  
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The e l ec t rochemica l  p o t e n t i a l  d a t a  i n  Table  1 show t h a t  a l l  t h e  metals 

t e s t e d ,  even s i l ve r ,  are more e l e c t r o p o s i t i v e  than  mercury and w i l l  t he re -  

f o r e  tend t o  ox id i ze  i n  t h e  presence of mercury. Th i s  f a c t  i s  a l s o  borne 

ou t  i n  t h e  c a s e  of c e r t a i n  metals by previous  work''). 

appearance of  a l l  t h e  contaminated samples, w i t h  t h e  no tab le  except ions  of 

t i n  and s i l ve r ,  a l s o  sugges t s  t h a t  an  oxide f i l m  was formed even a t  t h e  low 

p res su re  used. The s u r f a c e  t e n s i o n  measurements t h a t  were made on mercury 

and on f i v e  of  t h e  contaminated mercury samples o f f e r  l i t t l e  f u r t h e r  he lp  

i n  a r r i v i n g  a t  a v a l i d  exp lana t ion  of t h e  s t a r t l i n g  e f f e c t  on evapora t ion  

r a t e .  S i l v e r  has  no measurable e f f e c t  on t h e  s u r f a c e  t ens ion .  Th i s  i s  t h e  

expected behavior .  Zinc,  which lowers t h e  evapora t ion  ra te  g r e a t l y  and 

d u l l s  t h e  s u r f a c e  s l i g h t l y ,  has no s i g n i f i c a n t  e f f e c t .  The range noted i s  

due t o  experimental  d i f f i c u l t i e s .  

s l i g h t  and i s  expected on the  b a s i s  of t h e  s u r f a c e  t ens ion  of gal l ium. 

Sodium has a very  pronounced e f f e c t ,  which checks t h e  l i t e r a t u r e  va lue  q u i t e  

w e d 4 )  and which i s  expected from t h e  low su r face  t ens ion  of sodium. 

which forms no v i s i b l e  f i l m ,  lowers t h e  s u r f a c e  t e n s i o n  s i g n i f i c a n t l y ,  a t  

least  60 dynes/cm. 

m e t a l l i c  compound (hypothesized) which would have t o  have a lower s u r f a c e  

t e n s i o n  than  mercury. It cannot be due, on thermodynamic grounds, t o  t i n  

a lone u n l e s s  t h e  t i n  e x i s t s  i n  some unknown a s s o c i a t e d  form i n  the  l i q u i d  

mercury. 

The d u l l  coa ted  

The e f f e c t  of ga l l ium i s  r e a l  though 

T in ,  

Th i s  could  be due t o  formation of a t in-mercury i n t e r -  

The e v a p o r a t i o n - i n h i b i t i n g  e f f e c t  of z inc  and t h e  much l e s s  pronounced 

e f f e c t  of s i lver  w e  are i n c l i n e d  t o  a t t r i b u t e  t o  oxide formation. The 

s i l v e r  ox ide  may simply be i n v i s i b l e ,  i . e .  have an o p t i c a l  c h a r a c t e r  such 

t h a t  i t  does not  diminish t h e  l u s t e r  of t h e  pure mercury. O r  t h e  s i lver  

oxide may be t r u l y  so lub le  i n  the  mercury and form t h e  i n h i b i t i n g  f i l m  by 

su r face  a c t i v i t y  according t o  the  Gibbs equat ion .  W e  may hypothesize an  

e x a c t l y  s imilar  p i c t u r e  f o r  t i n ,  and assume t h a t  t h e  t i n  oxide i s  a more 

e f f e c t i v e  evapora t ion  b a r r i e r  than s i lver  oxide.  Sodium might a l s o  have 

exe r t ed  t h e  observed e v a p o r a t i o n - i n h i b i t i n g  e f f e c t  v ia  an oxide ,  even though 

i t  i s  t h e o r e t i c a l l y  capable  of so a c t i n g  i n  i t s  e lementa l  s t a t e .  I n  support  

of t h i s  view i s  t h e  v i s i b l e  change of  t h e  mercury su r face  caused by sodium. 
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It is of considerable importance to know the mechanism of the inhibi- 
tion. If it is due to an insoluble oxide film, as appears probable but not 

certain for magnesium and lithium, these substances would probably not be 

functional in the space environment. The oxide film could not form because 

of the extremely low oxygen pressure, and even if performed at low altitude 
it could not repair itself if ruptured. If it is due to pure metal (a 

possibility with sodium) or to a mercury-soluble intermetallic compound (a 

possibility with tin) or to a mercury-soluble oxide (a possibility with all 

four metals of interest, but especially with tin because its luster is 

undimmed) then the substances would be functional. The film would form and 

repair itself in the complete absence of oxygen. If soluble oxide is the 

active agent it would be used instead of the elemental metal as a contaminant. 

Conclusions 

A l l  contaminants tested inhibited the evaporation significantly, and 

four of them (sodium, lithium, magnesium and tin) reduced it to a satis- 

factory level (less than 1% of pure mercury). Four mechanisms could possibly 

cause the effects noted: 

(1) 
(2) Formation of an insoluble oxide film on the surface. 

(3)  Formation of a soluble Gibbsian-adsorbed intermetallic compound 

Formation of a Gibbsian-adsorbed elemental metal. 

or association complex. 

Formation of a Gibbsian-adsorbed mercury-soluble oxide. ( 4 )  

Since the systems would be used in the hard vacuum of space, mechanisms 

ill, #3 and #4 would indicate a satisfactory material, since the surface film 

would be rapidly self-repairing in the complete absence of oxygen. Mechanism 

#2 would be unsatisfactory since oxygen would be needed to repair a ruptured 

surface film. 

Of the four satisfactory contaminants only sodium could be acting in 

the form of a Gibbsian-adsorbed olemental metal. The remaining three could 

conceivably be acting in t’ie form of a soluble Gibbsian-adsorbed inter- 

metallic compound or association complex, or a mercury soluble oxide. It 

is a l so  possible that a l l  four could be acting by the formation of a simple 

oxide film. 
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Table  1 

P r o p e r t i e s  of Metals Used 

Sur face  Tension 
t ( "C) Metal (dynes/crn) a/ 

L i  3981860 (lo) 

N a  2 2 2 1 0 0 0 ( 5 )  

Mg 

Zn 753+10 - 

5636510 (lo) 

4 7 7 " ( 5 )  

Ga 35g4Oo ( 5 )  

Cd 6 3 0 3 2 0 0 ( 5 )  

300°(  6 )  In 543.8 

Sn 52 6253 ( 5 )  

Pb 4533500 ( 5 )  

8009700 (5) 4 3  

B i  3883000(5 )  

Hg 484  . 2 2 5 0 ( 7 )  

Std .  E lec t rode  Measured Surface  
( 8 )  Point Tension at 240C 

f n\ P o t e n t i a  1 
E o  ( v o l t s )  ("C) L71  200 pprn i n  Mercury 

3.045 

2.714 

2.37 

0.763 

0.52 

0.403 

0 .34  

0.136 

-0 .126 

-0.799 

----- 

-0 .854 

18 6 

97.5 

651 

419.5 

29 e 78 

320.9 

156.4 

232 

327.4 

960.8 

27 1 

-38.7 

--- 
2 72 

--- 

472-490 

429-461 

--- 

404-420 

--- 

482 

--- 

482-486 



Table 2 

Comparative Evaporation Rate of Pure versus Contaminated Mercury. 
Contaminant Present at -02% (200 ppm). Manifold Pressure = 5 x Torr. 

Total Length Rate of evaporation 
Evaporation of column as percentage of 

Run # Contaminant time (hrs) evaporated (cm) rate for pure mercury 

la 
1 

1 
2a 

2 

2 

4 
4 
4 

6 

6 

6 

6a 

6a 

None 

Zinc 

Lead 

None 

Bismuth 

Cadmium 

None 

Ga 11 ium 
Silver 

None 

Tin 

Ma gne s ium 

None 

Tin 

139 

139 

139 

88 
88 

88 

69 
69 

69 
64 
64 
64 

23 1 
23 1 

6a Magnesium 231 

7 None 44 
7 Indium 44 
7 Sodium 44 
8 None 145 

8 Sodium 14 5 

8 Lithium 14 5 

,127 

.005 

.037 

.120 

.013 

009 

. I 53  

.019 

.080 

.130 

0- .004 
0- .004 

b 

.40 
0- .004 

0- .004 

20 

.011 

0- .004 
e 50 

0- .004 
0- .004 

100 

4.2 

29.0 

100 

10.8 

7.2 

100 

12 

52 

100 

0-3 

0-3 
100 

less than 1 
less than 1 

100 

5.5 

less than 2 

100 
less than .8 

less than .8 

a. Runs 1 and 2 were made in capillary tubes of .025 cm diameter, 
The remaining runs were made in tubes of .065 cm diameter. 

b. Standard deviation for 5 readings = - + .002 cm. 



Figure 1 

Vacuum System for Rate of Evaporation Experiments 

(1) Cathetometer 

(2) Evaporation unit 

(3) 
( 4 )  Stainless steel dewar 

Vertical manipulator for outside magnet 

(5) Pump 

(6) Manifold 



Figure  2 

Basic Elements of the Evaporat ion U n i t  

(1) Contaminant p la t form 
(2) Mercury t rough 
(3) Rectangular  funne l  
( 4 )  Brass counterweight  
(5) Magnet counterweight  
( 6 )  Magnet 



APPENDIX 

I. Materials and Apparatus 

A l l  t h e  contaminants i n  t h i s  s tudy  were obta ined  commercially and were 

used wi thout  f u r t h e r  p u r i f i c a t i o n .  Lead (#8 shot )  cadmium ( s t i c k )  , z i n c  

( s t i c k )  , t i n  (bar) , magnesium (ribbon) , si lver  ( w i r e )  and l i t h i u m  (metal 

lump) w e r e  ob ta ined  from F i s h e r  S c i e n t i f i c  Company; bismuth (99.999+%) and 

indium (99.999+%) s t i c k s ,  from American Smelt ing and Ref in ing  Company; 

ga l l ium (99.999%) metal lump, from Kawecki Berylco I n d u s t r i e s ,  Inco rpora t ed ;  

and sodium (metal lump), from J. T. Baker Chemical Company. H e l i u m  and 

u l t r a h i g h  p u r i t y  N gas were obta ined  from A i r  Products ,  Incorpora ted .  2 

Mercury s tock  from previous  work w a s  aga in  c leaned  and p u r i f i e d  accord-  

i n g  t o  procedures  desc r ibed .  

The appara tus  used i n  t h e  evapora t ion  experiments  i s  shown i n  F igu re  1. 

The assembly c o n s i s t s  of a th ree - s t age  mercury d i f f u s i o n  pump i n  series w i t h  

a Welch Duoseal forepump, a McLeod gauge t o  monitor manifold p re s su re  and an 

evapora t ion  u n i t .  A l a r g e  l i q u i d  n i t r o g e n  t r a p  p reven t s  back-d i f fus ion  of  

mercury vapors  from t h e  d i f f u s i o n  pump t o  t h e  evapora t ion  u n i t .  A l l  s top-  

cocks used i n  t h e  assembly are h igh  vacuum stopcocks equipped w i t h  Tef lon  

p lug  and Vi ton  O-r ing s e a l s .  

The evapora t ion  u n i t  (shown i n  d e t a i l  i n  F i g u r e  2) has t h r e e  b a s i c  

elements:  (a)  a t h r e e  compartment Te f lon  t rough f o r  mercury; (b) a Tef lon  

t i p p i n g  p l a t fo rm shaft-mounted on t h e  t rough f o r  t h e  contaminants ;  and 

(c)  a Te f lon  holder  f o r  t h e  c a p i l l a r y  tub ings .  The holder  i s  supported by 

two s t a i n l e s s  s t ee l  s h a f t s  mounted on small r o l l e r  bear ings .  With a s imple 

pu l l ey  and counterweight  system a t t a c h e d  t o  one of t h e  s h a f t s  t h e  c a p i l l a r i e s  

can be t i pped  t o  any angle  from 0"-135" from t h e  v e r t i c a l  p o s i t i o n  wi th  t h e  

a i d  of an o u t s i d e  magnet. The l i g h t e r  counterweight  i s  a small ba r  magnet, 

t h e  heav ie r  i s  a small  b r a s s  weight .  Both are encased i n  Tef lon  t o  minimize 

impact on t h e  g l a s s  w a l l s  of t h e  b e l l  j a r .  
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Dropping the  contaminants i n t o  t h e  t rough i s  accomplished by means of 

a t i p p i n g  arm a t t ached  t o  pu l l ey .  A f i n e  s t e e l  w i r e  ho lds  the  contaminant 

p la t form i n  a h o r i z o n t a l  p o s i t i o n  and t h e  l a t t e r  i s  prevented from t i p p i n g  

over  t o  t h e  r e a r  by a small s t r i p  of  t h i n  b r a s s  shim j u s t  behind t h e  

t rough.  

The mercury t rough i s  screwed onto a s t a i n l e s s  s t ee l  hinge anchored t o  

a removable aluminum base.  

connected t o  t h e  bottom rear of t h e  t rough by a s h o r t  p i ece  of c o t t o n  thread .  

With t h i s  s e t  up i t  i s  p o s s i b l e  t o  t i p  t h e  mercury t rough forward by means 

of an o u t s i d e  magnet, f a r  enough t o  dump i t s  con ten t  i n t o  a r ec t angu la r  

g l a s s  funnel  p laced  j u s t  below t h e  c a p i l l a r y  ho lde r .  A g l a s s  tube  chu te s  

t h e  dumped m a t e r i a l s  t o  t h e  co ld  f i n g e r  on t h e  bottom h a l f  of t h e  b e l l  j a r .  

Behind the  trough i s  a Tef lon-c lad  ba r  magnet 

The suppor t  f o r  t h e  basJc elements  of t h e  evapora t ion  u n i t  a r e  screwed 

onto  a three- legged  aluminum base.  The upper base p l a t e  w a s  c u t  f u l l  of 

ho le s  l eav ing  j u s t  enough m a t e r i a l  t o  support  t h e  b a s i c  evapora t ion  u n i t .  

It i s  a l s o  r inged  wi th  a vi ton-O-ring t o  prevent  t h e  u n i t  from rocking 

whi le  i n s i d e  t h e  b e l l  jar .  

The b e l l  j a r  has  a 12-cm O.D.  mated j o i n t  equipped wi th  vi ton-O-ring 

gasket .  The lower h a l f  of t h e  b e l l  jar i s  connected t o  t h e  vacuum manifold 

v i a  a h igh  vacuum stopcock. A second stopcock on t h e  oppos i t e  s i d e  i s  

used t o  in t roduce  i n e r t  atmosphere t o  t h e  system. The lower ha l f  of t h e  

b e l l  j a r  has  a co ld  f i n g e r  (6  cm O.D.  and 5.5 inches  long) .  It r e s t s  on a 

rubber-padded aluminum suppor t  on t o p  of a s t a i n l e s s  s t e e l  dewar w i t h  t h e  

f u l l  l eng th  of t h e  co ld  f i n g e r  i n s i d e  t h e  dewar. 

The b e l l  j a r  system i s  enclosed i n  a P l e x i g l a s  a i r  ba th  equipped wi th  

a 60 w a t t  bu lb  h e a t e r  and thermoswitch f o r  temperature  c o n t r o l .  A s m a l l  

thermometer w i t h  t h e  mercury bulb  a s  near  as p o s s i b l e  t o  t h e  c a p i l l a r i e s ,  

i s  placed i n s i d e  t h e  b e l l  j a r  t o  monitor t h e  temperature .  

A l l  Tef lon  p a r t s  of t h e  evapora t ing  u n i t  are  baked and degassed a t  

250°C i n  a small vacuum c o a t e r  before  assembly. 
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The mercury t rough i s  c leaned  by unscrewing i t  from t h e  s t a i n l e s s  s t e e l  

h inge ,  removing t h e  contaminant p l a t fo rm and completely immersing t h e  trough 

success ive ly  i n  t h e  fo l lowing  s o l u t i o n s  i n  a son ic  bath:  10% n i t r i c  a c i d ,  

double d i s t i l l e d  water, and abso lu te  a l coho l .  It i s  then d r i e d  a t  6OoC and 

t h e  u n i t  assembled before  p l ac ing  i t  i n  t b e  vacuum chamber. 

11. Experimental  Procedures  

A .  P r e p a r a t i o n  of c a p i l l a r y  tub ing  f o r  evapora t ion  experiments 

Pyrex c a p i l l a r y  tub ing  5.5 cm long i s  c u t  from s tandard  s tock .  The 

f l a t t e r  and more c l e a r l y  c u t  end i s  lapped under water i n  N o .  400 and then  

i n  No. 600 carbonundum paper  u n t i l  t h e  su r face  i s  f l a t  and t h e  o u t e r  edge 

f r e e  of c r acks .  The c a p i l l a r y  i s  then  c leaned  by a s p i r a t i n g  whi le  immers- 

i n g  about h a l f  t h e  l e n g t h - o f  t h e  po l i shed  e n i  of t h e  tube f o r  t h r e e  minutes 

success ive ly  i n t o  t h e  fo l lowing  s o l u t i o n s  i n  a sonic  ba th ,  double d i s t i l l e d  

wa te r ,  10% n i t r i c  a c i d  s o l u t i o n ,  double d i s t i l l e d  water, acetone o r  abso lu t e  

a l coho l .  The c a p i l l a r y  i s  then  oven d r i e d  a t  l l O ° C  and t h e  unpol ished end 

sea l ed  us ing  an oxygen-natfiral gas flame. The c a p i l l a r y  diameter  i s  

measured u s i n g  a Uni t ron  Microscope equipped w i t h  a micrometer c o n t r o l l e d  

mechanical s t age .  

B. Measurement of evapora t ion  ra te  

The vacuum chamber housing t h e  evapora t ion  u n i t  i s  degassed a t  ambient 

temperature  a t  least  overn ight  f o r  every  run  p r i o r  t o  p l ac ing  t h e  mercury 

and t h e  contaminant i n  t h e  chamber. With t h e  mercury d i f f u s i o n  pump i n  

ope ra t ion  and t h e  t r a p  immersed i n  l i q u i d  n i t rogen ,  t h e  vacuum chamber can 

be pumped down t o  10 Tor r  i n  about an hour. -6  

Three c l e a n  c a p i l l a r y  tub ings  whose d iameter  have been determined a r e  

plpced i n  t h e  holder  and ad jus t ed  t o  proper  l eng ths .  Th i s  i s  t o  assure t h a t  

t h e  po l i shed  ends w i l l  completely d i p  i n s i d e  t h e  corresponding t roughs wi th-  

ou t  touching t h e  t r o u g h ' s  edges.  The o b j e c t  here  i s  t o  have t h e  c a p i l l a r y  

ends completely immersed i n  and surrounded by mercury o r  t h e  amalgam so lu -  

t i o n  t o  avoid t r app ing  any p r e s s u r i z i n g  gas  when t h e  c a p i l l a r i e s  are being 
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f i l l e d .  Adjustment of t h e  r e l a t i v e  p o s i t i o n  of  t h e  p u l l e y  counterweights  

maybe necessary  so t h a t  t h e  c a p i l l a r i e s  can  be pos i t i oned  a t  w i l l  from t h e  

v e r t i c a l  t o  t h e  d ipping  p o s i t i o n  and back by moving a magnet up and down 

o u t s i d e  t h e  vacuum chamber. The magnet i s  clamped t o  a l ead  screw ve r t i ca l  

manipulator  t o  e f f e c t  a more uniform and p o s i t i v e  c o n t r o l  of t h e  c a p i l l a r y  

holder .  

With t h e  except ion  of t h e  amalgams of sodium and l i t h i u m  which w e r e  

prepared under a tmospheric  cond i t ions  be fo re  i n t r o d u c t i o n  t o  t h e  vacuum 

chamber because of handl ing  d i f f i c u l t i e s  w i th  t h e  ba re  metals, t h e  contami- 

nan t s  were added t o  and d i s so lved  i n  mercury under h igh  vacuum (less than  

Tor r ) .  

Each contaminant i s  c u t  w i t h  a c l e a n  s t a i n l e s s  s teel  b lade  and weighed 

t o  0.05 mi l l ig ram on a five-. lace Mettler ba lance  so as t o  make a 200 ppm 

s o l u t i o n  when d i s so lved  i n  a preweighed amount of mercury. 

ho lds  about 1 2  gins of mercury wi thout  s p i l l a g e  w i t h  t h e  c a p i l l a r i e s  i n  t h e  

dipped p o s i t i o n .  

Each t rough 

I n  t h e  c a s e  of sodium and l i t h i u m ,  t h e  f r e s h l y  c u t  metal i s  weighed t o  

t h e  n e a r e s t  0.05 mg i n  a g l a s s  v i a l  and a small  amount of mercury immedi- 

a t e l y  added. The a d d i t i o n a l  mercury needed t o  make 200 ppm amalgam s o l u t i o n  

i s  then  e x a c t l y  weighed and subsequent ly  added j u s t  p r i o r  t o  p l a c i n g  t h e  

amalgam i n  t h e  vacuum chamber. 

The contaminant meta ls  a r e  p laced  on s l o t s  provided i n  t h e  t i p p i n g  

p l a t fo rm be fo re  t h e  i n d i v i d u a l  t roughs  are f i l l e d  w i t h  preweighed mercury. 

The upper h a l f  of t h e  b e l l  j a r  i s  then  clamped i n  p o s i t i o n  and t h e  vacuum 
-5 chamber evacuated.  A s  soon a s  s u f f i c i e n t  vacuum i s  a t t a i n e d  (1 x 10 Tor r  

o r  less) t h e  contaminants  are  dropped i n t o  t h e  mercury. When t h e  con- 

taminants  have d i s so lved ,  t h e  open end of t h e  c a p i k l a r y  tub ings  are 

slowly immersed i n  t h e  contaminated mercury, and helium i s  slowly in t roduced  

t o  fo rce  t h e  contaminated mercury i n t o  t h e  c a p i l l a r i e s .  

l a r i e s  are then  pos i t i oned  v e r t i c a l l y  and t h e  chamber evacuated t o  10 

o r  less .  

w i t h  l i q u i d  n i t rogen .  

The f i l l e d  c a p i l -  
-5 Tor r  

The excess  amalgam i s  then  dumped i n t o  t h e  co ld  f i n g e r  and f rozen  

Th i s  i s  necessary i n  o rde r  t o  main ta in  a s  low a 
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concen t r a t ion  of mercury as p o s s i b l e  i n  t h e  space above t h e  c a p i l l a r i e s  
while  t h e  manifold p re s su re  i s  maintained a t  less than  10 -5 Torr  as measured 

by t h e  McLeod gauge. 

f i l l e d  wi th  l i q u i d  n i t rogen .  

hours by a means of a s imple t imer-so lenoid  va lve  arrangement.  

T i m e  zero  i s  t aken  a f t e r  t h e  s t a i n l e s s  s t ee l  dewar i s  

.The dewar i s  r e f i l l e d  au tomat i ca l ly  every two 

One of t h e  t h r e e  c a p i l l a r i e s  i n  every evapora t ion  r a t e  experiment con- 

t a i n s  j u s t  pure mercury and serves as i n t e r n a l  c o n t r o l .  The ra te  o f  

evapora t ion  i s  determined by measuring t h e  change i n  l e n g t h  of  mercury i n  

t h e  c a p i l l a r y  wi th  t i m e  u s ing  a ca the tometer ,  Standard d e v i a t i o n  i n  l e n g t h  

measurement f o r  f i v e  readings  i s  - +.002 cm. 

measurement i s  e s t ima ted  t o  be 0.004 cm. 

Thus, t h e  maximum e r r o r  i n  

C.  Sur face  t e n s i o n  measurements 

The s u r f a c e  t e n s i o n s  of mercury and a few s e l e c t e d  amalgams (200 ppm) 

were measured by maximum bubble p re s su re  method u s i n g  an appara tus  pa t t e rned  

a f t e r  Sugden('l). 

The narrow j e t  had an i n t e r n a l  r a d i u s  o f  0.061 cm,  and an e x t e r n a l  r a d i u s  

of 0.091 cm, t h e  wide j e t ,  an i n t e r n a l  r a d i u s  of 0.296 and an e x t e r n a l  

r a d i u s  of 0.393 cm. With t h e  excep t ion  of t h e  almagam of sodium, t h e  

amalgams were prepared i n s i d e  t h e  bubbl ing chamber by dropping f r e s h l y  c u t  

meta ls  i n t o  preweighed amounts of  mercury. 

amalgam concen t r a t e  w a s  prepared under atmospheric cond i t ions  and then  

added t o  bulk  mercury i n  t h e  bubbl ing chamber. 

f ace  t e n s i o n s  were performed i n  t h e  manner desc r ibed  by Bosworth 

Ul t r ah igh  p u r i t y  n i t rogen  was  used as t h e  bubbl ing gas .  

I n  t h e  case  of  sodium, an 

F i n a l  c a l c u l a t i o n s  of su r -  
( 12) . 
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